Условный предел текучести формула

Условный предел текучести формула

Модуль упругости первого рода (Е) — физическая константа материала, определяемая путем эксперимента и являющаяся коэффициентом пропорциональности между напряжениями и деформациями:

σ = εЕ.

Модуль упругости можно определять измерением образца тензометром (расчетный способ) или графическим способом по начальному участку диаграммы растяжения.

Расчетный способ. Нагружают образец равными ступенями до нагрузки, соответствующей напряжению, равному 70-80% от предполагаемого σпц. Величина ступени нагружения должна составлять 5-10% от предполагаемого σпц. По результатам испытаний определяют среднюю величину приращения удлинения образца ∆lcp на ступень нагружения ∆Р.

Графический способ. Записывают диаграмму нагружения образца в координатах "нагрузка (ордината) — деформация (абсцисса)". ∆Р и ∆lcp определяют по диаграмме на участке от нагрузки Р до нагрузки, соответствующей напряжению равному 70-80% от предполагаемого σпц.

Модуль упругости вычисляют по формуле

МПа

Стандарты регламентируют также определение относительного равномерного удлинения δР, конечной расчетной длины образца lK, относительного удлинения образца после разрыва δ, относительного сужения ψ.

Предел пропорциональности σпц — наибольшее напряжение, до которого материал следует закону Гука, можно определять расчетным или графическим способами.

Расчетным способомопределяют или с помощью зеркального прибора при последовательном нагружении образца. Нагружение ведут сначала крупными ступенями, а затем при напряжении 0,65-0,8 от определяемого σпц — малыми ступенями. Рпц определяют при установленном отклонении деформации от закона пропорциональности, фиксируемом показаниями тензометра.

Графическим способомРпц определяют по машинной диаграмме растяжения.

От начала координат (рис.2.7) проводят прямую, совпадающую с начальным линейным участком диаграммы растяжения.

На произвольном уровне нагрузки проводят прямую АВ, параллельную оси абсцисс, и на этой прямой откладывают отрезок kn, равный половине отрезка mk. Через точку n и начала координат проводят прямую On и параллельно ей проводят касательную CD к диаграмме растяжения. Точка касания определяет искомую нагрузку Рпц.

Рис.2.7. Графические способы определения предела пропорциональности по диаграмме растяжения

Предел пропорциональности вычисляют по формуле

, МПа

Предел упругости σ 0,05 — наибольшее напряжение, до которого материал не получает остаточных деформаций. Так как пластические деформации в отдельных кристаллах появляются уже в самой ранней стадии нагружения, величина предела упругости (как и σпц) зависит от требований точности, которые налагаются на производимые измерения.

Расчетный способ. Образец нагружают до величины в два раза больше начальной Р, и после выдержки в течение 5-7 с разгружают до Р. Затем образец нагружают до величины, соответствующей 70-80% от предполагаемого σ0,05. Дальнейшее нагружение проводят ступенями с выдержкой на каждой ступени 5-7 с и последующей разгрузкой до Р с измерением остаточного удлинения. Испытания прекращают, если остаточное удлинение превысит установленный допуск. По результатам испытаний определяют нагрузку Р0,05

Графический способ, σ0,05 определяют по начальному участку диаграммы "нагрузка-деформация" (рис.2.8). Удлинения определяют на участке, равном базе измерителя деформации.

Для определения Р0,05 вычисляют соответствующую величину остаточного удлинения с учетом базы измерителя деформации. Найденную величину увеличивают пропорционально масштабу диаграммы по оси деформаций; отрезок полученной длины 0Е откладывают по оси абсцисс вправо от начала координат 0. Из точки Е проводят прямую ЕР, параллельную прямой 0А. Точка пересечения Р с диаграммой растяжения определяют нагрузку Р0,05.

Предел упругости вычисляет по формуле

.

Рис.2.8. Определение предела упругости

Предел текучести физическийσт, верхний предел текучести σтв и нижний предел текучести σтн определяют по диаграмме растяжения.

Скорость относительной деформации на площадке текучести устанавливают в пределах 0,00025- 0,0025 с -1 . Если такая скорость на площадке текучести не может быть установлена, то до начала текучести устанавливают скорость нагружения от 1 до 30 МПа/с.

Допускается определять нагрузку Рт по явно выраженной остановке стрелки силоизмерителя машины, обусловленной удлинением образца без заметного увеличения нагрузки.

Пределы текучести вычисляют по формуле

.

В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести (или явно выраженный начальный переходный эффект), за предел текучести принимается условно величина напряжения, при котором остаточная деформация σост = 0,002 или 0,2%.

Предел текучести условныйσ0,2 можно определить расчетным или графическим способом.

Расчетный способ.σ0,2 определяют аналогично расчетному способу определения предела упругости σ 0,05.

Графический способ. σ0,2— определяют аналогично графическому способу определения σ0,05, по точке пересечения с кривой растяжения прямой KL, параллельной начальному участку кривой и отстоящей от него по горизонтали на расстоянии 0К=0,2(1о/100) в соответствии с принятым допуском (рис.2.9).

Рис. 2.9. Определение предела текучести σ0,2 по диаграмме растяжения

Условный предел текучести можно определять графически по диаграмме, записанной на машине в масштабе, если масштаб ее диаграммного аппарата по оси деформаций не менее 50:1.

При определении σ0,2 скорость нагружения должна быть от от 1 до 30 МПа/с. Предел текучести условный вычисляют по формуле

.

Временное сопротивление σв (предел прочности). Для определения σв образец растягивают под действием плавно возрастающей нагрузки до разрушения. Наибольшая нагрузка, предшествующая разрушению образца, Рmах соответствует временному сопротивлению.

Временное сопротивление вычисляется по формуле

.

Для пластичных материалов характеристикой сопротивления разрушению гладкого образца при растяжении служит истинное сопротивление разрушению – истинный предел прочности Sk

,

где Fk— площадь сечения в месте разрушения; Pk-усилие в момент разрушения;

Характер разрушения определяют по виду излома образца (рис.2.10).

Количественными характеристиками прочности материала являются предел текучести и предел прочности.

Прочность – способность материалов сопротивляться воздействию внешних нагрузок.

Упругость – способность материала восстанавливать свою первоначальную форму и размеры после прекращения действия нагрузки.

Выше точки А нарушается пропорциональность между напряжением и деформацией, однако деформация практически является упругой. В материале фиксируются лишь ничтожные доли остаточной деформации, которая называется микропластическая деформация.

Количественной характеристикой упругости является условный предел упругости — напряжение, при котором остаточная микродеформация равна определенной заданной величине в пределах от 0,001 до 0,05%.

Читайте также:  Мультиметр dt 830d инструкция по применению

Условный предел упругости обозначается σ0,05, размерность — МПа.

Прочность

Прочность является одной из наиболее важных механических свойств металлов и сплавов при оценке их работоспособности.

В зависимости от вида получаемой диаграммы растяжения для различных материалов определяют либо условный предел текучести, либо физический предел текучести.

Обозначение условного предела текучести — σ0,2, размерность — МПа.

Условный предел текучести определяется на диаграммах «без площадки текучести» (рис.4.6, а).

а)

б)

Рис. 4.6. Диаграммы растяжения без (а ) и с (б ) «площадки тякучести»

Тогда условный предел текучести вычисляется по формуле:

где Р0,2 — определяется по неприведенной диаграмме растяжения (рис.4.6, а);

F — площадь поперечного сечения рабочей части образца до испытаний.

Физический предел текучести — напряжение, соответствующее «площадке текучести» на диаграмме.

Обозначение физического предела текучести — σТ, размерность — МПа. Физический предел текучести определяется на приведенной диаграмме растяжения (рис.4.6, б).

Предел прочности (временное сопротивление разрыву) — максимальное напряжение, которое выдерживает образец непосредственно перед разрушением.

Предел прочности обозначается — σв, размерность — МПа.

Предел прочности вычисляется по формуле:

где Рmax — максимальная нагрузка, определяется по неприведенной диаграмме растяжения (рис.4.6, б);

F — площадь поперечного сечения рабочей части образца до испытаний.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9079 — | 7217 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Если охарактеризовать понятие предела текучести кратко, то в сопротивлении материалов пределом текучести называют напряжение, при котором начинает развиваться пластическая деформация. Предел текучести относится к характеристикам прочности.

Согласно [1], текучесть — это макропластическая деформация с весьма малым упрочнением dτ/dγ.

Физический предел текучести — это механическая характеристика материалов: напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения для материалов, имеющих эту площадку (рисунок), σТ=PТ/F . Здесь PТ — это нагрузка предела текучести, а F — это первоначальная площадь поперечного сечения образца.

Предел текучести устанавливает границу между упругой и упруго-пластической зонами деформирования. Даже небольшое увеличение напряжения (нагрузки) выше предела текучести вызывает значительные деформации. [2]

Условный предел текучести

Условный предел текучести (он же технический предел текучести). Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести — напряжение, при котором остаточная деформация образца достигает определённого значения, установленного техническими условиями (большего, чем это установлено для предела упругости). [2] Под условным пределом текучести обычно подразумевают такое напряжение, при котором остаточная деформация составляет 0,2%. Таким образом обычно условный предел текучести при растяжении обозначается σ0,2.

Выделяют также условный предел текучести при изгибе и условный предел текучести при кручении.

Предел текучести металла

Характеристика, данная выше, справедлива в первую очередь для предела текучести металла. Предел текучести металла измеряется в кг/мм 2 или Н/м 2 . На значение предела текучести металла влияют самые разные факторов, например: толщина образца, режим термообработки, наличие тех или иных примесей и легирующих элементов, микроструктура, тип и дефекты кристаллической решётки и др. Предел текучести металлов сильно меняется с изменением температуры.

Предел текучести стали

Предел текучести сталей в ГОСТах указывается с пометкой "не менее", единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.

Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:

  • Предел текучести стали 20 (Ст20, 20) при T=20°С, прокат, после нормализации — не менее 245 Н/мм 2 или 25 кгс/мм 2 .
  • Предел текучести стали 30 (Ст30, 30) при T=20°С, прокат, после нормализации — не менее 295 Н/мм 2 или 30 кгс/мм 2 .
  • Предел текучести стали 45 (Ст45, 45) при T=20°С, прокат, после нормализации — не менее 355 Н/мм 2 или 36 кгс/мм 2 .

Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:

  • Предел текучести стали 30 (Ст30, закалка+отпуск): прокат размером до 16 мм — не менее 400 Н/мм 2 или 41 кгс/мм 2 ; прокат размером от 16 до 40 мм — не менее 355 Н/мм 2 или 36 кгс/мм 2 ; прокат размером от 40 до 100 мм — не менее295 Н/мм 2 или 30 кгс/мм 2 .
  • Предел текучести стали 45 (Ст45, закалка+отпуск): прокат размером до 16 мм — не менее 490 Н/мм 2 или 50 кгс/мм 2 ; прокат размером от 16 до 40 мм — не менее 430 Н/мм 2 или 44 кгс/мм 2 ; прокат размером от 40 до 100 мм — не менее 375 Н/мм 2 или 38 кгс/мм 2 .

*Механические свойства стали 30 распространяются на прокат размером до 63 мм.

Предел текучести стали 40Х (Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) — предел текучести стали 40Х не менее 785 Н/мм 2 или 80 кгс/мм 2 .

Предел текучести стали 09Г2С (ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая). Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм 2 (27 кгс/мм 2 ) до 345 Н/мм 2 (35 кгс/мм 2 ). Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C — 225 (23); для Т=300°C — 196 (20); Т=350°C — 176 (18); Т=400°C — 157 (16).

Предел текучести стали 3. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380—2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм 2 (не менее).

Читайте также:  Простые рисунки на наличники

Текучесть расплава

Текучесть расплава металла — это способность расплавленного металла заполнять литейную форму. Текучесть расплава для металлов и металлических сплавов — то же что и жидкотекучесть. (См. Литейные свойства сплавов).

Текучесть жидкости вообще и расплава в частности есть величина, обратная динамической вязкости. В Международной системе единиц (СИ) текучесть жидкости выражается в Па -1 *с -1 .

Подготовлено: Корниенко А.Э. (ИЦМ)

  1. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. — М.:*МИСИС*, 1997. — 527 с.
  2. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. — 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. — 199 с.: ил. — (Профтехобразование). — ББК 34.2/ Ж 86/ УДЖ 620.1
  3. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
  4. Бобылев А.В. Механические и технологические свойства металлов. Справочник. — М.: Металлургия, 1980. 296 с.
  5. Белянкин Ф.П. Энергетический предел текучести металлов. // Сборник Института строительной механики АН УССР. №9, 1948.152

Конкурс "Я и моя профессия: металловед, технолог литейного производства". Узнать, участвовать >>>

Определение предела текучести &nbsp&nbsp&nbsp

&nbsp&nbsp&nbsp&nbsp&nbsp &nbsp&nbsp&nbspП лощадке текучести диаграммы растяжения низкоуглеродистой стали соответствует напряжение &nbsp , называемое пределом текучести.

&nbsp&nbsp&nbsp&nbsp&nbsp &nbsp&nbsp&nbspП ределом текучести&nbsp(физическим) &nbsp называется напряжение, при котором в материале начинают интенсивно накапливаться остаточные (пластические) деформации, причем этот процесс идет при практически постоянном напряжении.

&nbsp&nbsp&nbsp&nbsp&nbsp &nbsp&nbsp&nbspП ри отсутствии площадки текучести (см. рисунок) определяют условный предел&nbspтекучести.

&nbsp&nbsp&nbsp&nbsp&nbsp &nbsp&nbsp&nbspУ словным пределом текучести &nbsp &nbspназывается напряжение, при котором остаточная (пластическая) деформация составляет 0.2%.&nbspДля нахождения на диаграмме точки Б (см.рисунок), соответствующей условному пределу текучести, необходимо воспользоваться законом разгружения и повторного нагружения. &nbsp&nbsp&nbsp

МАТЕРИАЛОВ И МЕТОДЫ ИЗМЕРЕНИЯ ТВЕРДОСТИ

Выполнил: cт.гр. ЭС-03

Проверил: Береснев Г. А.

Общие сведения и классификация металлов.

Металлы и сплавы используют в производстве электроустановок в качестве как конструкционных, так и электротехнических материалов. Первые применяют для изготовления корпусов приборов и аппаратов, шасси, органов управления и т. п. Вторые применяют в качестве проводниковых и магнитных материалов, изготавливая из них провода и кабели, сердечники трансформаторов, дросселей, катушек индуктивности и т. п.

По объёму и частоте использования металлов в технике их можно разделить на металлы технические и редкие технические – это железо Fe, медь Cu, алюминий Al, магний Mg, никель Ni, титан Ti, свинец Pb, цинк Zn, олово Sn. Редкие – это ртуть Hg, натрий Na, серебро Ag, золото Au, платина Pt, кобальт Co, хром Cr, молибден Mo, тантал Ta, вольфрам W и др.

По физико-химическим свойствам металлы можно разделить на шесть основных групп:

Магнитные – Fe, Co, Ni обладают ферромагнитными свойствами. Сплавы на основе Fe (стали и чугуны) являются главными конструкционными материалами; сплавы на основе Fe, Co и Ni являются основными магнитными материалами.

Тугоплавкие – металлы у которых температура плавления выше чем у Fe (1539 0 C); это W (3380 0 C), Ta (2970 0 C), Mo (2620 0 C), Cr (1900 0 C), Pt (1770 0 C), Ti (1670 0 C) и др.

Легкоплавкие – имеют температуру плавления ниже 500 0 C; это Zn (419 0 C), Pb (327 0 C), Cd (321 0 C), Bi (271 0 C), Sn (232 0 C), Na (98 0 C), Hg (-39 0 C) и др.

Лёгкие – металлы имеют плотность не более 2,75 Мг/м 3 это Al, плотность 2,7; Cs – 1,9; Be – 1,84; Mg – 1,74; Na – 0,97; Li – 0,53 Мг/м 3 и др. Применяют для производства сплавов, используемых в конструкциях с ограничениями в массе.

Благородные – в электротехнике применяют Au, Ag, Pt, Pd, Ir, Rh, Os, Ru. Обладают высокой химической стойкостью, в том числе и при повышенных температурах. Используют для контактов, выводов интегральных микросхем, полупроводниковых приборов и др.

Редкоземельные – лантаноиды; их применяют как присадки в различных сплавах.

Механические свойства металлов.

Под действием внешней нагрузки в твёрдом теле возникают напряжение и деформация.

Деформация – это изменение формы и размеров твёрдого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т. п.

Упругая – исчезает после снятия нагрузки.

Пластическая – сохраняется после снятия нагрузки.

Напряжение , кгс/мм 2 – это нагрузка (сила) P, отнесённая к первоначальной площади поперечного сечения F образца:

1 кгс/мм 2 = 9,80665 МПа

Прочность – способность металлов оказывать сопротивление деформации или разрушению статическим, динамическим или знакопеременным нагрузкам.

Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение.

Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках – усталостной прочностью.

Участок оа на диаграмме соответствует упругой деформации материала, когда соблюдается закон Гука. Напряжение, соответствующее упругой предельной деформации в точке а, называется пределом пропорциональности.

Предел пропорциональности () – максимальное напряжение, до которого сохраняется линейная зависимость между деформацией и напряжением.

При напряжениях выше предела пропорциональности происходит равномерная пластическая деформация (удлинение или сужение сечения).

Каждому напряжению соответствует остаточное удлинение, которое получаем проведением из соответствующей точки диаграммы растяжения линии параллельной оа.

Так как практически невозможно установить точку перехода в неупругое состояние, то устанавливают условный предел упругости, – максимальное напряжение, до которого образец получает только упругую деформацию. Считают напряжение, при котором остаточная деформация очень мала (0,005…0,05%).

В обозначении указывается значение остаточной деформации .

Предел текучести характеризует сопротивление материала небольшим пластическим деформациям.

В зависимости от природы материала используют физический или условный предел текучести.

Физический предел текучести – это напряжение, при котором происходит увеличение деформации при постоянной нагрузке (наличие горизонтальной площадки на диаграмме растяжения). Используется для очень пластичных материалов.

Читайте также:  Тюль в комнате без штор фото

Но основная часть металлов и сплавов не имеет площадки текучести.

Условный предел текучести – это напряжение вызывающее остаточную деформацию

Физический или условный предел текучести являются важными расчетными характеристиками материала. Действующие в детали напряжения должны быть ниже предела текучести.

Равномерная по всему объему пластичная деформация продолжается до значения предела прочности.

В точке в в наиболее слабом месте начинает образовываться шейка – сильное местное утомление образца.

Предел прочности напряжение, соответствующее максимальной нагрузке, которую выдерживает образец до разрушения (временное сопротивление разрыву).

Образование шейки характерно для пластичных материалов, которые имеют диаграмму растяжения с максимумом.

Предел прочности характеризует прочность как сопротивления значительной равномерной пластичной деформации. За точкой В, вследствие развития шейки, нагрузка падает и в точке С происходит разрушение.

Истинное сопротивление разрушению – это максимальное напряжение, которое выдерживает материал в момент, предшествующий разрушению образца (рис. 6.8).

Пластичность – свойство металлов деформироваться без разрушения под действием внешних сил и сохранить изменённую форму после снятия этих сил. Её характеристиками являются относительное удлинение после разрыва и относительное сужение после разрыва . Эти характеристики определяют при испытании металлов на растяжение, а их численные значения вычисляют по формулам:

— относительное удлинение

— относительное сужение

I и Ik – длина образца до и после разрушения соответственно;

F и Fk – площадь поперечного сечения образца до и после разрушения (шейка).

Твёрдость – способность металлов оказывать сопротивление проникновению в них более твёрдого тела.

Упругость – свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упругость – свойство, обратное пластичности.

Производят испытания на твёрдость по Бринеллю, Роквеллу, Виккерсу, Польди, и на микротвёрдость.

Наиболее распространенные два метода. Твёрдость, согласно, этим методам, определяют следующим образом.

По Роквеллу – в испытуемый образец вдавливают специальный алмазный конус, угол вершины которого равен 120 0 , или закалённый стальной шарик диаметром 1,588 мм. В этом случае измеряют не диаметр отпечатка, а глубину вдавливания. Алмазный конус или стальной шарик вдавливают двумя последовательными нагрузками: предварительной в 10 кгс и основной в 90 кгс для стального шарика (шкала В), 140 кгс для алмазного конуса (шкала С) или 50 кгс для алмазного конуса (шкала А) при испытании очень твёрдых и тонких образцов. После приложения предварительной нагрузки определяют глубину вдавливания h, а после основной – h. За единицу твёрдости принята величина t, соответствующая осевому перемещению конуса (шарика) на 0,002 мм: t=(h-h)/0,002.

Числа твёрдости по Роквеллу определяют в условных единицах по формулам:

HRB=130-t (шкала B)

HRC=100-t (шкала С и А).

По Бринеллю – в испытываемый образец с определённой силой вдавливают закалённый стальной шарик диаметром D=10,5 или 2,5 мм. Число твёрдости по Бринеллю – HB, характеризуется отношением нагрузки P, действующей на шарик, к поверхности отпечатка F, мм 2 .

Значение HB измеряют в кгс/мм 2 , или в СИ – в МПа (1 кгс/мм 2 = 9,80665 МПа)

Чем меньше диаметр отпечатка d, тем больше твёрдость образца. Диаметр шарика D и нагрузку P выбирают в зависимости от материала и толщины образца. На практике определяют не F, а диаметр d отпечатка с помощью специальной лупы, имеющей шкалу. По диаметру d отпечатка из таблицы определяют твёрдость в HB. Этим методом определяют твёрдость незакалённых паковок, отливок и деталей, изготовленных из стального проката твёрдостью до HB 450 (4500 МПа). При большей твёрдости шарик деформируется.

Вязкость – способность металлов оказывать сопротивление ударным нагрузкам.

Вязкость – свойство, обратное хрупкости.

Ударные нагрузки испытывают, например, колеса локомотивов и вагонов на стыках рельсов.

Удельная ударная вязкость н характеризуется работой, израсходованной на разрушение образца. Значения н вычисляют по формуле нн/F кгс/см 2 , кДж/м 2 где Ан=G(H-h) – работа удара. H – высота, F – площадь поперечного сечения образца.

Ударная вязкость характеризует надежность материала, его способность сопротивляться хрупкому разрушению

Испытание проводят на образцах с надрезами определенной формы и размеров. Образец устанавливают на опорах копра надрезом в сторону, противоположную удару ножа маятника, который поднимают на определенную высоту (рис.)

Схема испытания на ударную вязкость: а – схема маятникового копра; б – стандартный образец с надрезом; в – виды концентраторов напряжений; г – зависимость вязкости от температуры

На разрушение образца затрачивается работа:з

где: Р – вес маятника, Н – высота подъема маятника до удара, h – высота подъема маятника после удара.

Характеристикой вязкости является ударная вязкость (ан), — удельная работа разрушения.

где: F — площадь поперечного сечения в месте надреза.

ГОСТ 9454 – 78 ударную вязкость обозначает KCV. KCU. KCT. KC – символ ударной вязкости, третий символ показывает вид надреза: острый (V), с радиусом закругления (U), трещина (Т) (рис. в)

Серийные испытания для оценки склонности металла к хладоломкости и определения критических порогов хладоломкости.

Испытывают серию образцов при различных температурах и строят кривые ударная вязкость – температура ( ан – Т) (рис. г), определяя пороги хладоломкости.

Порог хладоломкости — температурный интервал изменения характера разрушения, является важным параметром конструкционной прочности. Чем ниже порог хладоломкости, тем менее чувствителен металл к концентраторам напряжений (резкие переходы, отверстия, риски), к скорости деформации.

Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры.

Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.

Влияние температуры на пластичное и хрупкое состояние

Усталость — разрушение материала при повторных знакопеременных напряжениях, величина которых не превышает предела текучести.

Усталостная прочность – способность материала сопротивляться усталости.

Характеристики усталостной прочности определяются при циклических испытаниях “изгиб при вращении“. Схема представлена на рис. 7.5.

Рис. 7.5. Испытания на усталость (а), кривая усталости (б)

Ссылка на основную публикацию
Adblock detector