Техническое состояние техники это

Техническое состояние техники это

ГОСТ20911—89 предусматривает использование двух терминов: «техническое диагностирование» и «контроль технического состоя­ния». Термин «техническое диагностирование» применяют, когда ре­шаемые задачи технического диагностирования, перечисленные в 1.1, равнозначны или основной задачей являются поиск места и оп­ределение причин отказа. Термин «контроль технического состоя­ния» применяют, когда основной задачей технического диагностиро­вания является определение вида технического состояния.

Различают следующие виды технического состояния, характери­зуемые значением параметров объекта в заданный момент времени:

• исправное — объект соответствует всем требованиям норма­тивно-технической и (или) конструкторской документации;

• неисправное — объект не соответствует хотя бы одному из тре­бований нормативно-технической и (или) конструкторской доку­ментации;

• работоспособное — значения всех параметров, характеризую­щих способность объекта выполнять заданные функции, соответст­вуют требованиям нормативно-технической и (или) конструктор­ской документации;

• неработоспособное — значение хотя бы одного параметра, ха­рактеризующего способность объекта выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) кон­структорской документации;

• предельное — дальнейшая эксплуатация объекта технически невозможна или нецелесообразна из-за несоответствия требованиям
безопасности или неустранимого снижения эффективности работы.

Понятие «исправное состояние» шире, чем понятие «работоспо­собное состояние». Если объект исправен, он обязательно работо­способен, но работоспособный объект может быть неисправным, так как некоторые неисправности могут быть несущественными, не на­рушающими нормальное функционирование объекта.

Для сложных объектов, в частности для магистральных трубо­проводов, допускается более глубокая классификация работоспособ­ных состоянии с выделением частично работоспособного (частично неработоспособного) состояния, при котором объект способен час­тично выполнять заданные функции. Примером частично работо­способного состояния служит такое состояние линейной части маги­стральных трубопроводов, при котором участок способен выполнять требуемые функции по перекачке технологической среды с пони­женными показателями, в частности с пониженной производитель­ностью при снижении допускаемого давления (РД 51-4.2-003-97).

Системой технического диагностирования (контроля технического состояния) называют совокупность средств, объекта и исполнителей, необходимую для проведения диагностирования (контроля) по пра­вилам, установленным в технической документации. Объектами тех­нической диагностики являются технологическое оборудование или конкретные производственные процессы.

Средство контроля — техническое устройство, вещество или мате­риал для проведения контроля. Если средство контроля обеспечивает возможность измерения контролируемой величины, то контроль на­зывают измерительным. Средства контроля бывают встроенными, яв­ляющимися составной частью объекта, и внешними, выполненными конструктивно отдельно от объекта. Различают также аппаратные и программные средства контроля. К аппаратным относят различные устройства: приборы, пульты, стенды и т.п. Программные средства представляют собой прикладные программы для ЭВМ.

Исполнители — это специалисты службы контроля или техниче­ской диагностики, обученные и аттестованные в установленном по­рядке и имеющие право выполнять контроль и выдавать заключения по его результатам.

Методика контроля — совокупность правил применения опреде­ленных принципов и средств контроля. Методика содержит порядок измерения параметров, обработки, анализа и интерпретации резуль­татов.

Для каждого объекта можно указать множество параметров, ха­рактеризующих его техническое состояние (ПТС). Их выбирают в зависимости от применяемого метода диагностирования (контроля). Изменения значений ПТС в процессе эксплуатации связаны либо с внешними воздействиями на объект, либо с повреждающими (деградационными) процессами (процессами, приводящими к деградационным отказам из-за старения металла, коррозии и эрозии, устало­сти и т.д.).

Параметры объекта, используемые при его диагностировании (контроле), называются диагностическими (контролируемыми) па­раметрами. Следует различать прямые и косвенные диагностиче­ские параметры. Прямой структурный параметр (например, износ трущихся элементов, зазор в сопряжении и др.) непосредственно характеризует техническое состояние объекта. Косвенный параметр (например, давление масла, температура, содержание СО2 в отрабо­танных газах и др.) косвенно характеризует техническое состояние. Об изменении технического состояния объекта судят по значениям диагностических параметров, позволяющих определить техниче­ское состояние объекта без его разборки. Набор диагностических параметров устанавливается в нормативной документации по тех­ническому диагностированию объекта или определяется экспери­ментально.

Количественные и качественные характеристики диагностиче­ских параметров являются признаками того или иного дефекта. У каждого дефекта может быть несколько признаков, в том числе не­которые из них могут быть общими для группы разных по природе дефектов.

Теоретическим фундаментом технической диагностики считают общую теорию распознавания образов, являющуюся разделом техни­ческой кибернетики. К решению задачи распознавания существует два подхода: вероятностный и детерминистский. Вероятностный использует статистические связи между состоянием объекта и диаг­ностическими параметрами и требует накопления статистики соот­ветствия диагностических параметров видам технического состоя­ния. Оценка состояния при этом осуществляется с определенной достоверностью. Детерминистский подход, применяемый чаще все­го, использует установленные закономерности изменения диагно­стических параметров, определяющих состояние объекта.

Помимо теории распознавания, в технической диагностике ис­пользуют также теорию контролеспособности. Контролеспособность определяется конструкцией объекта, задается при его проектирова­нии и является свойством объекта обеспечивать возможность досто­верной оценки диагностических параметров. Недостаточная досто­верность оценки технического состояния является фундаментальной причиной низкой достоверности распознавания состояния оборудо­вания и оценки его остаточного ресурса.

Таким образом, в результате предшествующих исследований ус­танавливают связи между характеристиками диагностических пара­метров и состоянием объекта и разрабатывают диагностические ал­горитмы (алгоритмы распознавания), представляющие собой после­довательность определенных действий, необходимых для постановки диагноза. Диагностические алгоритмы включают также систему ди­агностических параметров, их эталонные уровни и правила принятия решения о принадлежности объекта к тому или иному виду техниче­ского состояния.

Определение вида технического состояния оборудования может производиться как в собранном состоянии, так и после его полной разборки. В период нормальной эксплуатации используют методы безразборной диагностики, как наиболее экономичные. Методы тех­нической диагностики, требующие разборки, обычно применяют при капитальном ремонте оборудования — при дефектации его эле­ментов. Основной проблемой безразборной технической диагности­ки является оценка состояния оборудования в условиях ограничен­ности информации.

По способу получения диагностической информации техниче­скую диагностику разделяют на тестовую и функциональную. В тес­товой диагностике информацию о техническом состоянии получают в результате воздействия на объект соответствующего теста. Тестовая диагностика основана на использовании различных методов неразрушающего контроля. Контроль при этом осуществляется, как пра­вило, на неработающем оборудовании. Тестовая диагностика может производиться как в собранном, так и в разобранном состоянии. Функциональную диагностику проводят только на работающем обо­рудовании в собранном состоянии.

Функциональную диагностику в свою очередь подразделяют на вибрационную и параметрическую диагностики. При использовании функциональной параметрической диагностики оценка техничес­кого состояния осуществляется по величине функциональных параметров оборудования при его работе, при этом подача целена­правленных тестовых воздействий не требуется. Отклонение этих па­раметров от их номинального значения (температура, давление, мощность, количество перекачиваемого продукта, КПД и т.д.) сви­детельствует об изменении технического состояния элементов объ­екта, формирующих данный параметр. Контроль функциональных параметров обычно осуществляется в постоянном режиме оператив­ным обслуживающим персоналом с помощью штатных приборно-измерительных комплексов технологического оборудования. В свя­зи с этим функциональную параметрическую диагностику часто на­зывают оперативной. Способы функциональной параметрической диагностики обычно излагаются в инструкциях и руководствах по эксплуатации соответствующего вида оборудования и в данном по­собии специально не рассматриваются.

Читайте также:  Машинка для чистки трикотажа

Вибрационная диагностика бывает двух видов: тестовая и функ­циональная (см. 2.1). Сущность функциональной вибрационной диагностики заключается в использовании параметров вибрации оборудования при функционировании в рабочих условиях для оценки его технического состояния без разборки. Особенностью функциональной вибрационной диагностики является использова­ние в качестве диагностических не статических параметров типа тем­пературы или давления, а динамических — виброперемещения, виб­роскорости и виброускорения.

Помимо отмеченных выше видов диагностики, для оценки со­стояния оборудования применяют методы разрушающего контроля, предусматривающие частичное разрушение объекта (например, при вырезке проб для установления свойств материалов путем их меха­нических испытаний), а также инструментальный измерительный контроль элементов оборудования при его разборке во время обсле­дования или ремонта. Классификация видов технической диагности­ки приведена на рис. 1.3.

Системы диагностики различаются уровнем получаемой инфор­мации об объекте. В зависимости от решаемой задачи выделяют сле­дующие виды диагностических систем: для разбраковки объектов на исправные и неисправные или для аттестации объектов по классам; поиска и измерения дефектов и повреждений; мониторинга состоя­ния объекта и прогнозирования его остаточного ресурса. Последняя из перечисленных систем является наиболее сложной и применяется для ответственных и дорогостоящих опасных производственных объ­ектов и технологического оборудования. Такие системы, предусмат­ривающие проведение постоянного мониторинга с применением комплекса методов контроля технического состояния, позволяют проводить оперативную корректировку прогнозных оценок определяющих параметров и уточнение остаточного ресурса. В качестве ос­новных методов контроля развития дефектности в комплексных сис­темах мониторинга в настоящее время используют: для емкостного оборудования — акустико-эмиссионный контроль, для машинно­го — контроль вибрационных параметров.

Современное технологическое оборудование представляет собой сложные технические системы. Обеспечение требуемой надежности таких систем, оцениваемой вероятностью безотказной работы Р(1) (см. табл. 1.1), является более проблематичным по сравнению с про­стыми. Надежность любой технической системы определяется на­дежностью составляющих ее элементов. В большинстве случаев для сложных систем контроль одного или нескольких элементов мало­эффективен, так как остается неизвестным состояние остальных.

Составляющие элементы сложных технических систем могут со­единяться между собой последовательным, параллельным или ком­бинированным способами. При последовательном соединении эле­ментов с вероятностью безотказной работы Р1 Р2, . Рn вероятность безотказной работы системы определяется из выражения

,

Где Pi вероятность безотказности i-го элемента.

При параллельном соединении

При комбинированном способе вначале определяют вероятность безотказной работы элементов с параллельным соединением, а за­тем — с последовательным.

Способ параллельного соединения дублирующих элементов на­зывается резервированием. Резервирование позволяет резко повы­сить надежность сложных технических систем. Например, если в системе перекачки сырой нефти предусмотрены два независи­мых параллельных насоса с вероятностью безотказной работы Р1 = Р2 = 0,95, то вероятность безотказной работы всей системы

Суммарная надежность системы определяется надежностью ее составляющих. Чем больше количество составляющих, из которых состоит система, тем выше должна быть надежность каждой из них. Например, если техническая система состоит из 100 последовательно соединенных элементов с одинаково высокой вероятностью безот­казной работы 0,99, то общая ее надежность будет равна 0,99 100 , что составит около 0,37, т. е. вероятность безотказной работы системы в течение заданного времени t составляет только 37 %. В связи с этим при диагностировании сложных систем, прежде всего включающих большое число составляющих без резервирования, для получения достоверной оценки их надежности необходимо осуществлять сплошной контроль всех составляющих.

Состояние технической системы может описываться множеством параметров. При диагностировании сложных систем, работоспособ­ность которых характеризуется большим числом параметров, возни­кает ряд дополнительных проблем, а именно:

• необходимо установить номенклатуру основных диагностиче­ских параметров, характеризующих работоспособность системы, и задать технические средства их контроля;

• по совокупности этих параметров необходимо разработать ал­горитм оценки технического состояния системы и соответствующие программные продукты для ЭВМ.

При проведении диагностики применяют сплошной и выбороч­ный контроль. Крайне важным фактором является то, что примене­ние современных неразрушающих методов позволяет перейти к сплошному контролю. Для сложного технологического оборудова­ния, состоящего из большого числа зависимых элементов, введение сплошного неразрушающего контроля является необходимым усло­вием достоверной оценки его технического состояния.

Диагностика требует определенных затрат, которые растут по мере повышения требований к надежности и безопасности. Для сравнения: в атомной промышленности США затраты на дефекто­скопию составляют до 25% всех эксплуатационных затрат, в Рос­сии — около 4%. По данным ВНИКТИ нефтехимоборудования, за­траты на диагностику нефтехимического оборудования в США со­ставляют около 6% эксплуатационных затрат, в России — менее 1%. Вместе с тем эта статья расходов оправдана, так как использова­ние систем технического диагностирования позволяет эксплуатиро­вать каждый экземпляр технологического оборудования до предель­ного состояния и за счет этого получить значимый экономический эффект.

Техническое обслуживание (согласно ГОСТ18322-78) это комплекс операций или операция по поддержанию работоспособности или исправности изделия при использовании по назначению, ожидании, хранения и транспортировании.

Задачей технического обслуживания средств вычислительной техники
(СВТ) является:

«Обеспечение надежной (правильной и бесперебойной) работы средств вычислительной техники, которые позволяют пользователям использовать в полном объеме информационные массивы организации и другие сторонние источники информации».

Следовательно, понятие технического облуживания СВТ неотрывно связано с его надежностью

В соответствии с ГОСТ 27.002-89 "Надежность в технике. Основные понятия. Термины и определения" Под надежностью понимается свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонта, хранения и транспортирования.

Надежность является комплексным свойством объекта, которое в зависимости от назначения объекта и условий его пребывания включает следующие понятия:

  • безотказность,
  • долговечность,
  • ремонтопригодность
  • сохраняемость.

Безотказность — свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

Долговечность — свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта.

Ремонтопригодность — свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.

Сохраняемость — свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования.

1. Виды технического состояния объекта (СВТ)

Указанные важнейшие свойства надежности характеризуют определенные технические состояния объекта.

Согласно ГОСТ 27.002-89 различают пять основных видов технического состояния объектов.

Исправное состояние. Состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации.

Читайте также:  Варианты молдинга на стенах

Неисправное состояние. Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации.

Работоспособное состояние. Состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации.

Неработоспособное состояние. Состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.

Предельное состояние. Состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна , либо восстановление его работоспособного состояния невозможно или нецелесообразно.

Переход объекта (изделия) из одного вышестоящего технического состояния в нижестоящее обычно происходит вследствие событий: повреждений или отказов.

отказ — это событие, заключающееся в нарушении работоспособного состояния объекта.

повреждение — событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния.

В ГОСТ 15467-79 введено еще одно понятие, отражающее состояние объекта — дефект.

Дефектом называется каждое отдельное несоответствие объекта установленным нормам или требованиям. Дефект отражает состояние отличное от отказа.

2. Показатели надежности

В соответствии с ГОСТ 27.002-89 для количественной оценки надежности применяются показатели — характеризующие готовность и эффективность использования технических объектов:

2.1.1. Вероятность безотказной работы Вероятность безотказной работы — это вероятность того, что в пределах

заданий наработки отказ объекта не возникает. На практике этот показатель определяется статистической оценкой где: No — число однотипных объектов (элементов), поставленных на испытания (находящихся под контролем); во время испытаний отказавший объект не восстанавливается и не заменяется исправным;

n(t) — число отказавших объектов за время t.

Из определения вероятности безотказной работы видно, что эта характеристика является функцией времени, причем она является убывающей функцией и может принимать значения от 1 до 0.
Рисунок 1- График функции Р(t)

График вероятности безотказной работы объекта изображен на рисунке 1. Как видно из графика, функция P(t) характеризует изменение надежности во времени и является достаточно наглядной оценкой.

Например, на испытания поставлено 1000 образцов однотипных НЖМД, то есть No = 1000. При испытании отказавшие элементы не заменялись исправными. За время t отказало 10 накопителей. Следовательно, P(t) = 0,99 и наша уверенность состоит в том, что любой накопитель из данной выборки не откажет за время t с вероятностью P(t) = 0,99.

Иногда практически целесообразно пользоваться не вероятностью безотказной работы, а вероятностью отказа Q(t). Поскольку работоспособность и отказ являются состояниями несовместимыми и противоположными, то их вероятности [4,13] связаны зависимостью:
Р(t) + Q(t) = 1,

следовательно:
Q(t) = 1 — Р(t).

Если задать время Т, определяющее наработку объекта до отказа, то Р(t) = P(T > t), то есть вероятность безотказной работы это вероятность того, что

время Т от момента включения объекта до его отказа будет больше или равно времени t, в течение которого определяется вероятность безотказной работы.

2.1.2. Средняя наработка до отказа

Средней наработкой до отказа называется математическое ожидание наработки объекта до первого отказа T1.

2.3.1. Среднее время восстановления

Среднее время восстановления — это математическое ожидание времени восстановления работоспособного состояния объекта после отказа . Из определения следует, что
, (2.17)

где n — число восстановлений, равное числу отказов; — время, затраченное на восстановление (обнаружение, поиск причины и устранение отказа), в часах.

2.4. Комплексные показатели надежности

2.4.1. Коэффициент готовности Процесс функционирования восстанавливаемого объекта можно

представить как последовательность чередующихся интервалов работоспособности и восстановления (простоя).
Рисунок 2 — График функционирования восстанавливаемого объекта:
t1 — tnинтервалы работоспособности;

Коэффициент готовности — это вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается. Этот показатель одновременно оценивает свойства работоспособности и ремонтопригодности объекта.
Для одного ремонтируемого объекта коэффициент готовности

Из выражения 2.23 видно, что коэффициент готовности объекта может быть повышен за счет увеличения наработки на отказ и уменьшения среднего времени восстановления. Для определения коэффициента готовности необходим достаточно длительный календарный срок функционирования объекта.
2.4.2. Коэффициент оперативной готовности

Коэффициент оперативной готовности КОГ определяется как вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени (кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается) и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.
Из вероятностного определения следует, что

, (2.23)

где КГ — коэффициент готовности; Р(tр) — вероятность безотказной работы объекта в течение времени (tр), необходимого для безотказного использования по назначению.

Опыт эксплуатации очень многих электронных приборов показывает, что для них характерны три вида зависимостей интенсивности отказов от времени (Рисунок 3), соответствующих трем периодам жизни этих устройств.

Рисунок 3. Зависимость интенсивности отказов от времени

Приработка – интервал характеризуется повышенным уровнем отказов, интенсивность отказов большая, но с течением времени уменьшается;

Нормальная эксплуатация – уровень отказов не значителен, интенсивность отказов большая практически постоянная;

Износ –уровень отказов возрастает, интенсивность отказов растет стечением времени.

Рисунок 4. Вероятность безотказной работы: 1-непрерывная работы за время t, 2-работа с техническим обслуживанием.

Экспоненциальный характер вероятности безотказной работы позволяет определить периоды ТО, как интервал времени в течении которого вероятности безотказной работы СВТ не снижается ниже заданной величины. Следовательно, период ТО будет различен для различных видов СВТ и определяется уровнем требований (допустимая интенсивность отказов) предъявляемых для СВТ.

Переход оборудования из одного технического состояния (ТС) в другое обычно происходит вследствие повреждения или отказа.

Повреждение — событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния.

При повреждении работоспособность объекта сохраняется, но со временем повреждение может перейти в отказ, в результате чего работоспособность будет нарушена. Например, царапина на защитном покрытии печатной платы сначала не нарушает работоспособность прибора, но через определенное время под воздействием загрязнения, влаги и других факторов в этом месте может произойти замыкание проводников, которое приведет к отказу прибора.

Отказом называется событие, заключающееся в нарушении работоспособного состояния объекта. Критерием отказа является признак или совокупность признаков нарушения работоспособности объекта, установленных в нормативно-технической и (или) конструкторской (проектной) документации.

Наряду с понятиями «повреждение» и «отказ» в теории надежности и технической диагностике используются понятия «дефект» и «неисправность».

Дефект — это каждое отдельное несоответствие объекта установленным требованиям. Если есть дефект, значит, хотя бы один из показателей качества или параметров объекта вышел за предельное значение или не выполняется одно из требований нормативной документации. Термин «дефект» в основном применяется при контроле качества продукции (объекта) на стадии изготовления, а также при ремонте, например при дефектации объекта, при составлении ведомостей дефектов и контроле качества отремонтированного объекта.

Читайте также:  Подсистема для крепления керамогранита

Дефект может быть конструктивным (при несоответствии требованиям технического задания или правилам разработки объекта) и производственным (при несоответствии требованиям нормативной документации на изготовление и поставку объекта). Примерами дефектов могут служить выход размера детали за пределы допуска, неправильная сборка или регулировка прибора, царапина на защитном покрытии и др.

Неисправность означает нахождение объекта (изделия) в неисправном состоянии. Этот термин применяется при использовании, хранении и транспортировании объектов (изделий). Находясь в неисправном состоянии, объект может иметь один или несколько дефектов. В отличие от термина «дефект» термин «неисправность» применяется не ко всем объектам. Так, не называют неисправностями недопустимые отклонения параметров материалов, топлива, химических продуктов.

Различие между исправностью и работоспособностью заключается в том, что работоспособность определяется выполнением основных требований, а исправность — выполнением как основных, так и второстепенных. Поэтому понятие «исправность» шире, чем понятие «работоспособность». Действительно, если прибор исправен, то он обязательно и работоспособен, работоспособный прибор может быть и неисправным.

В соответствии с ГОСТ 27.002-89 различают следующие виды состояния технических объектов.

Исправное состояние — это состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации. Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации, называется неисправным.

Работоспособным называется состояние объекта, при котором значения всех параметров, характеризующих его способность выполнять заданные функции, соответствуют требованиям нормативнотехнической и (или) конструкторской (проектной) документации. Под неработоспособным понимают такое состояние объекта, при котором значение хотя бы одного параметра, характеризующего его способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.

Предельное состояние — это состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна либо восстановление его работоспособного состояния невозможно или нецелесообразно.

При диагностировании объектов используют понятие правильного или неправильного функционирования.

Состояние правильного функционирования — состояние, при котором применяемый по назначению объект в целом или его составная часть выполняют в текущий момент времени предписанные им алгоритмы функционирования со значениями параметров, соответствующими установленным требованиям. Соответственно, в состоянии неправильного функционирования объект не выполняет предписанные алгоритмы функционирования с требуемыми значениями параметров.

Возможны случаи, когда существенное повреждение имеется в той части объекта, которая в обеспечении данного режима не участвует. В результате неработоспособный объект с учетом всех режимов работы может находиться в состоянии правильного функционирования. На пример, система автоматического удержания судна на курсе (авторулевой), работая в следящем или простом режиме, находится в режиме правильного функционирования. Главная обратная связь по курсу судна может быть неработоспособной и поэтому вместе с блоком коррекции в этих режимах не участвует.

Все множество возможных ТС объекта может быть разделено на подмножества состояний правильного и неправильного функционирования.

Рассмотрим взаимосвязь выделенных подмножеств ТС (рис. 3.1).

Пусть площадь, занятая на диаграмме прямоугольной фигурой В, характеризует множество всех возможных видов технического состояния объекта, а площади фигур И, Р и ПФ соответствуют подмножествам состояний исправного, работоспособного и правильно функционирующего (в определенном режиме) объекта.

Площади, дополняющие площади фигур И, Р и ПФ до площади В, обозначим как И, Р и ПФ. Им отвечают подмножества состояний неисправного, неработоспособного и неправильно функционирующего объекта соответственно.

Используя символику теории множеств, запишем соотношения для включенных друг в друга подмножеств:

Исправный объект всегда работоспособен и функционирует правильно, неисправный также может быть работоспособным и правильно функционирующим.

Объединение подмножеств и их дополнений приводит к полному (основному) множеству:

На рисунке показаны три характерных пересечения подмножеств:

— подмножество состояний неисправного, но работоспособного объекта (на диаграмме — это площадь с двойной штриховкой);

— подмножество состояний неработоспособного, но правильно функционирующего объекта.

Работоспособный объект может быть неисправным, но при этом правильно функционирующим. Неработоспособный объект всегда неисправен, но при этом он может быть правильно функционирующим в каком-либо режиме.

Правильно функционирующий в данном режиме объект может быть неисправным и с учетом всех режимов неработоспособным. Неправильно функционирующий объект всегда неисправен и неработоспособен.

Исправность и неисправность, работоспособность и неработоспособность, правильное и неправильное функционирование — это укрупненные технические категории, определяющие вид технического состояния.

Для облегчения задачи диагностирования каждый вид технического состояния подразделяют на группы состояний, которые характеризуются определенными общими свойствами. Переход объекта естественным путем из одной группы в другую означает появление совокупности физических дефектов, опознаваемых как обобщенный дефект.

Состояние объекта распознается с точностью до вида при его проверке и с точностью до группы при поиске дефекта. Если в результате проверки установлено, что объект работоспособен, можно определить группу (степень) его работоспособности. Если объект признан неработоспособным, то поиск дефекта осуществляется с точностью до группы неработоспособности, т. е. до обобщенного существенного дефекта.

Следует отметить, что отказ объекта может возникнуть в результате наличия одного или нескольких дефектов, но появление дефектов не всегда означает, что возник отказ. Таким образом, дефект, как и неисправность, в зависимости от его влияния на техническое состояние объекта может означать и повреждение, и отказ. В дальнейшем при диагностировании объектов будут рассматриваться дефекты, приводящие к отказу отдельного элемента или системы в целом.

Уровень технического состояния объекта (см. рис. 3.1) снижается под действием эксплуатационных факторов, приводящих к повреждению, отказу и переходу в предельное состояние из-за неустранимого нарушения требований безопасности, снижения эффективности эксплуатации, морального старения и др. Уровень технического состояния повышают путем проведения ТО и ремонта. Так, если в гирокомпасе перестала работать следящая система, следует говорить о возникновении отказа, так как нарушено одно из основных требований к нормальной работе гирокомпаса, и пользоваться таким прибором до устранения причины отказа нельзя.

Если перегорела одна из сигнальных лампочек на штурманском пульте, это не отказ, а повреждение, так как нарушается исправность только одной детали прибора и гирокомпас сохраняет свою работоспособность.

Ссылка на основную публикацию
Adblock detector