Эдс индукции в рамке формула

Эдс индукции в рамке формула

В этой публикации рассмотрены основные термины, законы и методики вычисления ЭДС магнитной индукции. С помощью представленных ниже материалов можно самостоятельно определить силу тока во взаимосвязанных контурах, изменение напряжения в типовых трансформаторах. Эти сведения пригодятся для решения различных электротехнических задач.

Магнитный поток

Известно, что пропускание тока через проводник сопровождается формированием электромагнитного поля. На этом принципе основана работа динамиков, запорных устройств, приводов реле, других приспособлений. Изменением параметров источника питания получают необходимые силовые усилия для перемещения (удержания) совмещенных деталей, обладающих ферромагнитными свойствами.

Однако действительно и обратное утверждение. Если между полюсами постоянного магнита перемещать рамку из проводящего материала по соответствующему замкнутому контуру, начнется перемещение заряженных частиц. Подключив соответствующие приборы, можно регистрировать изменение тока (напряжения). В ходе элементарного эксперимента можно выяснить увеличение эффекта в следующих ситуациях:

  • перпендикулярное расположение проводника/силовых линий;
  • ускорение перемещений.

На картинке выше показано, как определять направление тока в проводнике с помощью простого правила.

Что такое ЭДС индукции

Отмеченное выше перемещение зарядов создает разницу потенциалов, если контур разомкнут. Представленная формула показывает, как именно будет зависеть ЭДС от основных параметров:

  • векторного выражения магнитного потока (B);
  • длины (l) и скорости перемещения (v) контрольного проводника;
  • угла (α) между векторами движения/ индукции.

Аналогичный результат можно получить, если система составлена из стационарной проводящей цепи, на которую воздействует перемещающееся магнитное поле. Замкнув контур, создают подходящие условия для перемещения зарядов. Если использовать много проводников (катушку) или двигаться быстрее, увеличится сила тока. Представленные принципы с успехом применяют для преобразования механических сил в электроэнергию.

Обозначение и единицы измерения

ЭДС в формулах обозначают вектором Е. Подразумевается напряженность, которую создают сторонние силы. Соответствующим образом эту величину можно оценивать по разнице потенциалов. По действующим международным стандартам (СИ), единица измерения – один вольт. Большие и малые значения указывают с применением кратных приставок: «микро», «кило» и др.

Законы Фарадея и Ленца

Если рассматривается электромагнитная индукция, формулы этих ученых помогают уточнить взаимное влияние значимых параметров системы. Определение Фарадея позволяет уточнить зависимость ЭДС (E – среднее значение) от изменений магнитного потока (ΔF) и времени (Δt):

Промежуточные выводы:

  • ток увеличивается, если за единицу времени проводник пересекает большее количество силовых магнитных линий;
  • «-» в формуле помогает учитывать взаимные связи между полярностью Е, скоростью перемещения рамки, направленностью вектора индукции.
Читайте также:  Виды печей для обогрева дома

Ленц обосновал зависимость ЭДС от любых изменений магнитного потока. При замыкании контура катушки создаются условия для движения зарядов. В таком варианте конструкция преобразуется в типичный соленоид. Рядом с ним образуется соответствующее электромагнитное поле.

Этот ученый обосновал важную особенность индукционной ЭДС. Сформированное катушкой поле препятствует изменению стороннего потока.

Движение провода в магнитном поле

Как показано в первой формуле (Е = В * l * v * sinα), амплитуда электродвижущей силы в значительной мере зависит от параметров проводника. Точнее – влияние оказывает количество силовых линий на единицу длины рабочей области цепи. Аналогичный вывод можно сделать с учетом изменения скорости перемещения. Следует не забывать о взаимном расположении отмеченных векторных величин (sinα).

Важно! Перемещение проводника вдоль силовых линий не провоцирует индуцирование электродвижущей силы.

Вращающаяся катушка

Обеспечить оптимальное расположение функциональных компонентов при одновременном перемещении сложно, если применять представленный в примере прямой провод. Однако согнув рамку, можно получить простейший генератор электроэнергии. Максимальный эффект обеспечивает увеличение количества проводников на единицу рабочего объема. Соответствующая отмеченным параметрам конструкция – катушка, типичный элемент современного генератора переменного тока.

Для оценки магнитного потока (F) можно применить формулу:

где S – площадь рассматриваемой рабочей поверхности.

Пояснение. При равномерном вращении ротора происходит соответствующее циклическое синусоидальное изменение магнитного потока. Аналогичным образом меняется амплитуда выходного сигнала. Из рисунка понятно, что определенное значение имеет величина зазора между основными функциональными компонентами конструкции.

ЭДС самоиндукции

Если через катушку пропускать переменный ток, рядом будет формироваться электромагнитное поле с аналогичными (равномерно изменяющимися) силовыми характеристиками. Оно создает переменный синусоидальный магнитный поток, который, в свою очередь, провоцирует перемещение зарядов и образование электродвижущей силы. Данный процесс называют самоиндукцией.

С учетом рассмотренных базовых принципов несложно определить, что F = L * l. Значение L (в генри) определяет индуктивные характеристики катушки. Этот параметр зависит от количества витков на единицу длины (l) и площади поперечного сечения проводника.

Взаимоиндукция

Если собрать модуль из двух катушек, в определенных условиях можно наблюдать явление взаимной индукции. Элементарное измерение покажет, что по мере увеличения расстояния между элементами уменьшается магнитный поток. Обратное явление наблюдается по мере уменьшения зазора.

Чтобы находить подходящие компоненты при создании электрических схем, необходимо изучить тематические вычисления:

  • можно взять для примера катушки с разным количеством витков (n1 и n2);
  • взаимоиндукция (M2) при прохождении по первому контуру токаI1 будет вычислена следующим образом:
  • после преобразования этого выражения определяют значение магнитного потока:
  • для расчета эдс электромагнитной индукции формула подойдет из описания базовых принципов:
Читайте также:  Спальный гарнитур хай тек фото

E2 = – n2 * ΔF/ Δt = M 2 * ΔI1/ Δt

При необходимости можно найти по аналогичному алгоритму соотношение для первой катушки:

E1 = – n1 * ΔF/ Δt = M 1 * ΔI2/ Δt.

Следует обратить внимание, что в этом случае значение имеет сила (I2) во втором рабочем контуре.

Совместное влияние (взаимоиндукцию – М) рассчитывают по формуле:

Специальным коэффициентом (K) учитывают действительную силу связи между катушками.

Где используются разные виды ЭДС

Перемещение проводника в магнитном поле применяют для генерации электроэнергии. Вращение ротора обеспечивают за счет разницы уровней жидкости (ГЭС), энергией ветра, приливами, топливными двигателями.

Различное количество витков (взаимоиндукцию) применяют для изменения нужным образом напряжения во вторичной обмотке трансформатора. В таких конструкциях взаимную связь увеличивают с помощью ферромагнитного сердечника. Магнитную индукцию применяют для возникновения мощной отталкивающей силы при создании ультрасовременных транспортных магистралей. Созданная левитация позволяет исключить силу трения, значительно увеличить скорость передвижения поезда.

Видео

Прямоугольная рамка из N витков одинаковой площадью S вращается с частотой ν вокруг одной из своих сторон в однородном магнитном поле с индукцией B. Линии индукции перпендикулярны оси вращения, сопротивление рамки равно R. Установите соответствие между физическими величинами и формулами, по которым их можно определить.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ФОРМУЛЫ

А) амплитуда ЭДС индукции в рамке

Б) эффективное (действующее) значение силы тока, протекающего через рамку

1)

2)

3)

4)

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А) При изменении потока магнитного поля через рамку, в ней возникает ЭДС индукции Поток, проходящий через рамку где — угол между нормалью к плоскости рамки и вектором магнитной индукции, величина которого изменяется по закону Следовательно, ЭДС индукции Значит, амплитуда изменения ЭДС индукции в рамке

Б) Сила тока, протекающего через рамку Действующее значение силы тока, это такое значение постоянного тока, которое производит такую же работу, как и рассматриваемый переменный ток за время одного периода. Для синусоидального тока

Читайте также:  Куда жаловаться если не дали отопление

1.Мгновенное значение ЭДС индукции определяется формулой закона Фарадея (18.4):

.

При вращении рамки магнитный поток изменяется по закону :

, где — угловая частота.

Тогда мгновенное значение ЭДС индукции мы найдем по формуле(18.1), аналогичной (18.1), но с учетом числа витков N:

,(18.40)

подставив значение .

Произведя вычисления по формуле (18.40), получим:

=47,1 В.

2.Максимальное значение ЭДС индукции равно амплитудному значению — согласно формуле

(18.41)

Произведя вычисления по формуле (18.41), получим:

= 94,2 В.

3.Среднее значение ЭДС за минимальное время, в течение которого магнитный поток, пронизывающий рамку, изменится от нуля до максимального значения, то есть за , где (поскольку поток изменяется по косинусоидальному закону):

(18.42)

Произведя вычисления по формуле (18.42), получим:


ТЕМА 19. Законы электромагнитного поля — уравнения Максвелла

В предыдущих темах были рассмотрены экспериментально установленные основные законы электрических и электромагнитных явлений:

закон полного тока Ампера и

закон электромагнитной индукции Фарадея-Ленца.

Законы электромагнитного поля сформулированы Дж.К.Максвеллом как обобщение экспериментальных фактов. Они позволяют решать основную задачу, возникающую при изучении электромагнитных явлений: по заданному распределению зарядов и токов отыскать созданные ими в каждой точке пространства электрические и магнитные поля.

Математическая запись этих законов – уравнения Максвелла — в современном виде сделана Г.Герцем и О.Хевисайдом.

Система уравнений Максвелла для статических полей ( в вакууме):

I. ,

II.

III.

IV.

Уравнения I и II характеризуют электростатическое поле и указывают на существование электрических зарядов, на которых начинаются и кончаются силовые линии электрического поля. Равенство нулю циркуляции указывает на потенциальный характер электростатического поля (силовые линии поля не замкнуты – либо расходятся, либо сходятся).

Уравнения III и IVхарактеризуют магнитостатическое поле и указывают на источник магнитостатического поля – постоянные электрические токи. Равенство нулю потока вектора указывает на отсутствие магнитных зарядов: силовые линии магнитного поля замкнуты, то есть магнитное поле – вихревое.

Система уравнений Максвелла для переменных полей ( в вакууме):

.

.

Уравнение II указывает на новый источник электрического поля – переменное магнитное поле, и возникающее электрическое поле оказывается тоже новымвихревым.

Уравнение IV указывает на новый источник магнитного поля – переменное электрическое поле, но возникающее при этом магнитное поле оказывается таким же, как и в статике, — вихревым.

Ссылка на основную публикацию
Adblock detector